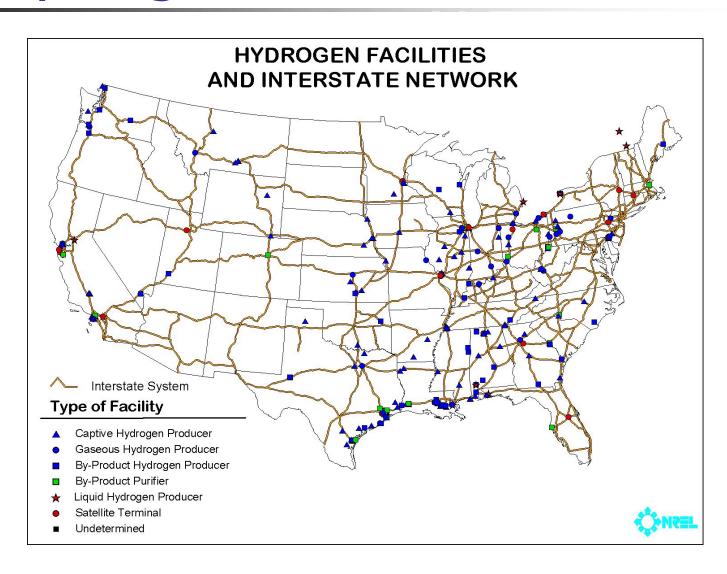


Hydrogen Safety

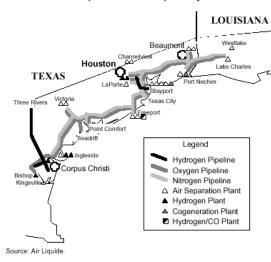
U.S. Department of Energy

January 2003

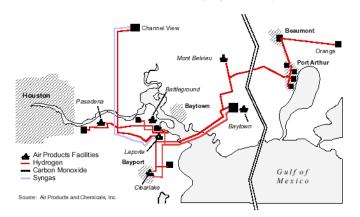

Hydrogen Fundamentals

- Energy Content: 60,958 Btu/lb highest energy content of all fuels on a weight basis
 - This is why NASA uses hydrogen they care a lot more about weight than volume)
 - Energy content is about three times higher than gasoline, natural gas, and propane on a weight basis
 - Energy content is only about one third that of natural gas and about an eighth that of propane on a volume basis
- Flammability limits (in air): 4.1 v% 74 v%
- Explosion limits (in air): 18.3 v% 59 v%

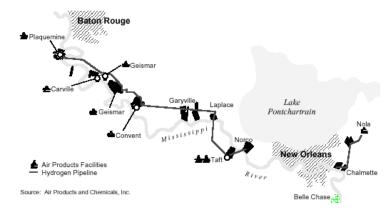
Hydrogen Today


- Production (9 million tons per year)
 - Steam methane reforming
 - Electrolysis
 - Byproduct
- Uses largely in industrial settings
 - Petroleum upgrading
 - Food processing (hydrogenation)
 - Semiconductor processing
 - NASA (only large-scale fuel use)
- Transporting/Delivery
 - Pipeline
 - Liquid tanker
 - Tube trailer (compressed gas)

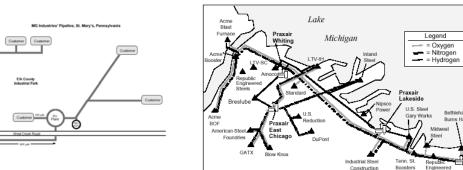
Hydrogen Facilities in the US



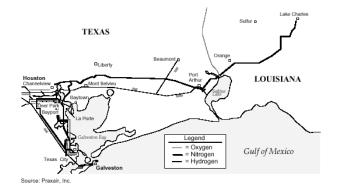
Hydrogen Pipelines


Air Liquide Gulf Coast Pipeline System

Air Products' U.S. Texas Gulf Coast Hydrogen Pipeline System



Air Products' Louisiana Hydrogen Pipeline System


Praxair's Chicago Area Pipeline System

Legend

Praxair's U.S. Gulf Coast Hydr

Source: Praxair, Inc.

Codes and Standards

- Code-making bodies in the US
 - About 20 major developers (excluding federal agencies such as EPA and DOT)
 - Nearly all is done using a consensus process
- Must be adopted by each jurisdiction to be "legal" and binding
 - Approximately 44,000 jurisdictions in the US
 - Federal, state, county, city or town

Code Developers

- International Code Council, Inc. (ICC)
 - Building Officials and Code Administrators International (BOCA)
 - International Conference of Building Officials (ICBO)
 - Southern Building Code Congress International, Inc. (SBCC)
- Underwriters Laboratories (UL)
- National Fire Protection Association (NFPA)
- CSA International
- Society of Automotive Engineers (SAE)
- Institute of Electrical and Electronic Engineers (IEEE)
- American Society of Mechanical Engineers (ASME)
- International Electrotechnical Commission (IEC)
- International Organization for Standards (ISO)
- Compressed Gas Association (CGA)
- Natural Gas Institute (NGI)
- US Department of Transportation
- Occupational Health and Safety Administration (OHSA)

Issues

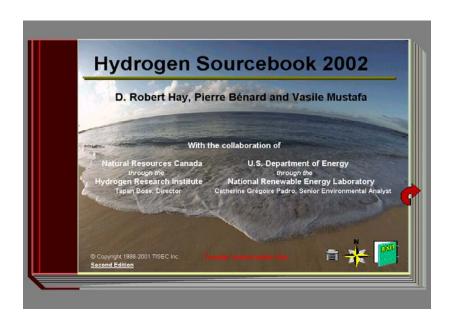
- Codes & standards are being developed in advance of, or in parallel with, hydrogen-fueled systems
 - Codes & standards development must be coordinated with technology development
 - Efforts should be devoted to R&D efforts to validate proposed standards (i.e., need data to support or validate proposed requirements)
- Coordination is vital
 - All applications involve production, transportation, storage, dispensing, and use of hydrogen
 - A large number of organizations are involved in generating codes & standards

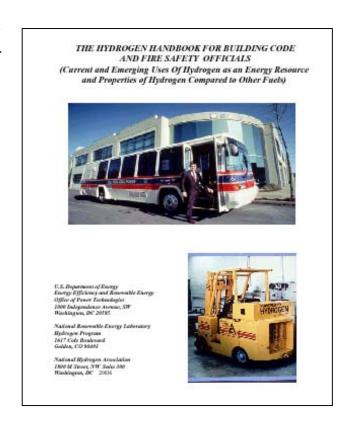
Component	Codes	Status
Technology		
Production	NFPA 70/ NEC/CEC	mature
	ASME Boiler-Pressure Vessel Sec. VIII	mature
Transportation:	DOT	mature
	49 CFR	mature
Pipeline	NEC/CEC	mature
	ANSI/ASME B31.1, B31.8	mature
Storage	NFPA 50 A: Gaseous Hydrogen	mature (1994)
	NFPA 50 B: Liquid Hydrogen	mature (1994)
	ASME Boiler-Pressure Vessel Sec. VIII	mature
Vehicle Refueling Stations	HV-3: Hydrogen Vehicle Fuel	being developed
	NFPA 52: CNG Vehicle Fuel	base for HV-3
	HV-1: Hydrogen Vehicle Connector	being developed
	NGV1: NGV connectors	base for HV-1
Hydrogen Vehicles	HV-3: Hydrogen Vehicle Fuel	being developed
	NFPA 52: CNG Vehicle Fuel	base for HV-3
	HV-2: Gaseous Hydrogen Tanks	being developed
	NGV2: CNG Storage Tanks	base for HV-2

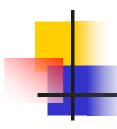
ISO-TC197

Identification	Title	Working Group	Convener
Number			(Country)
DIS 13984	Liquid H ₂ - Land Vehicle Fueling System Interface	WG 1	SCC (Canada)
DIS 14687	H ₂ Fuel-Product Specification	WG 3	ANSI (USA)
NP 15594	Airport H ₂ Fueling Facility	WG 4	DIN (Germany)
NP 15866	Gaseous H ₂ and H ₂ Blends Vehicular Fuel Systems	WG 5	ANSI (USA)
NP 15869	Gaseous H ₂ - Vehicle fuel tanks	WG 6	ANSI (USA)
NP 15916	Basic requirements for safety of H ₂ systems	WG 7	DIN (Germany)
WD 13985	Liquid H ₂ - Land vehicle fuel tank		SCC (Canada)
WD 13986	Tank containers for multimodal transport of liquid H ₂		SCC (Canada)

Hydrogen Uses - Tomorrow


- Mobile Applications
 - Fuel cell vehicles (buses, trucks, passenger)
 - Modified ICEs
- Stationary Applications
 - Uninterruptible power supplies
 - Backup/premium power
 - CHP
- Portable Applications





- The Hydrogen Handbook for Building Code and Fire Safety Officials
- The Hydrogen Sourcebook

Typical Hydrogen Site Plan Review

- Confinement
- Review Potential for Ignition
- Minimizing Consequences
- Review the Need for Detectors
- Safety Analysis
- Review Site-Specific Factors
- Personal Investigation

Sensors

 Safe, reliable, cheap sensors being developed

Placement is important

Odorants

 Diffusion/dispersion matching is difficult

Poison to fuel cell?

Safe Hydrogen Systems

- Safety issues can be handled through testing, certification, and codes & standards, just like with any other fuel
- Sustained, collaborative government-industry RD&D needed
 - Fuel cell and vehicle systems development are critical
 - Infrastructure and codes & standards development require significant government participation (on all levels)
 - Coordination is key

For more information:

Neil P. Rossmeissl

U.S. Department of Energy

Hydrogen, Fuel Cells and Infrastructure Technologies Program

Tel: 202-586-8668

Email: neil.rossmeissl@ee.doe.gov

www.eren.doe.gov/hydrogen